Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10489-10497, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584354

RESUMO

We describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers. Our joint computational and experimental analyses provide structural information about the SAM binding geometries under ambient conditions. Additionally, we examine the reactivity of the pyridine-functionalized SAMs toward H2SO4 and W(CO)5(THF) and verify the preservation of the introduced functionality at the interface. Our results demonstrate the versatility of N-heterocyclic carbenes as robust platforms for on-surface acid-base and ligand exchange reactions.

2.
Chem Sci ; 13(38): 11382-11387, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320577

RESUMO

Treatment of the trichlorotin-capped trinuclear nickel cluster, [Ni3(dppm)3(µ3-Cl)(µ3-SnCl3)], 1, with 4 eq. NaHB(Et)3 yields a µ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)3(µ3-H)(µ3-SnH)], 2 [dppm = bis(diphenylphosphino)methane]. Single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and computational studies together support that cluster 2 is a divalent tin hydride. Complex 2 displays a wide range of reactivity including oxidative addition of bromoethane across the Sn center. Addition of 1 eq. iodoethane to complex 2 releases H2 (g) and generates an ethyltin-capped nickel cluster with a µ3-iodide, [Ni3(dppm)3(µ3-I)(µ3-Sn(CH2CH3))], 4. Notably, insertion of alkynes into the Sn-H bond of 2 can be achieved via addition of 1 eq. 1-hexyne to generate the 1-hexen-2-yl-tin-capped nickel cluster, [Ni3(dppm)3(µ3H)(µ3-Sn(C6H11))], 5. Addition of H2 (g) to 5 regenerates the starting material, 2, and hexane. The formally 44-electron cluster 2 also displays significant redox chemistry with two reversible one-electron oxidations (E = -1.3 V, -0.8 V vs. Fc0/+) and one-electron reduction process (E = -2.7 V vs. Fc0/+) observed by cyclic voltammetry.

3.
J Am Chem Soc ; 144(31): 14330-14338, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905473

RESUMO

The characterization of electrical double layers is important since the interfacial electric field and electrolyte environment directly affect the reaction mechanisms and catalytic rates of electrochemical processes. In this work, we introduce a spectroscopic method based on a Stark shift ruler that enables mapping the electric field strength across the electric double layer of electrode/electrolyte interfaces. We use the tungsten-pentacarbonyl(1,4-phenelenediisocyanide) complex attached to the gold surface as a molecular ruler. The carbonyl (CO) and isocyanide (NC) groups of the self-assembled monolayer (SAM) provide multiple vibrational reporters situated at different distances from the electrode. Measurements of Stark shifts under operando electrochemical conditions and direct comparisons to density functional theory (DFT) simulations reveal distance-dependent electric field strength from the electrode surface. This electric field profile can be described by the Gouy-Chapman-Stern model with Stern layer thickness of ∼4.5 Å, indicating substantial solvent and electrolyte penetration within the SAM. Significant electro-induction effect is observed on the W center that is ∼1.2 nm away from the surface despite rapid decay of the electric field (∼90%) within 1 nm. The applied methodology and reported findings should be particularly valuable for the characterization of a wide range of microenvironments surrounding molecular electrocatalysts at electrode interfaces and the positioning of electrocatalysts at specific distances from the electrode surface for optimal functionality.


Assuntos
Eletricidade , Eletrólitos , Eletrodos , Ouro , Vibração
4.
Inorg Chem ; 59(15): 10532-10539, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32674565

RESUMO

The anionic state of basic ruthenium acetate complexes of the type [Ru3O(OAc)6](CO)(L1)(L2) (L = 4-cyanopyridine, pyridine, and N,N-dimethylaminopyridine) feature pronounced optical transitions in the near-infrared region indicative of strongly coupled mixed-valence states. A series of these clusters was prepared and studied spectroscopically in tandem with density functional theory (DFT) computational results to construct an orbital structure-function description of how the electron density is shared between the ruthenium centers in this mixed-valent state. The mixed-valency manifests itself as a combination of the nonbonding atomic orbitals of the equivalent ruthenium centers, with increased energetic splitting between the orbitals with symmetries appropriate for more efficient electronic communication. This DFT-based model agrees with the Marcus-Hush description of mixed-valency, with the added knowledge that specific orbitals contribute to different degrees in the electronic coupling between two redox centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...